Semi-symmetry of δ(2,2) Chen ideal submanifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ideal Slant Submanifolds in Complex Space Forms

Roughly speaking, an ideal immersion of a Riemannian manifold into a space form is an isometric immersion which produces the least possible amount of tension from the ambient space at each point of the submanifold. Recently, B.-Y. Chen studied Lagrangian submanifolds in complex space forms which are ideal. He proved that such submanifolds are minimal. He also classified ideal Lagrangian submani...

متن کامل

Equivalence of isotropic submanifolds and symmetry

The genesis of this paper lies in theoretical questions in geometrical diffraction theory where a central role is played by the systems of rays passing through a boundary of an obstacle ~aperture! ~cf. Refs. 1,2!. It is explained in Refs. 1,3,4 why the proper isotropic submanifolds of cotangent boundles ~phase spaces! do occur in geometrical diffraction and why the symmetry group of these objec...

متن کامل

Semi-global Extension of Maximally Complex Submanifolds

Let A be a domain of the boundary of a strictly pseudoconvex domain Ω of Cn and M a smooth, closed, maximally complex submanifold of A. We find a subdomain à of Ω, depending only on Ω and A, and a complex variety W ⊂ à such that bW ∩A = M . Moreover, a generalization to analytic sets of depth at least 4 is given.

متن کامل

Semi-invariant warped product submanifolds of almost contact manifolds

* Correspondence: meraj79@gmail. com Department of Mathematics, University of Tabuk, Tabuk, Kingdom of Saudi Arabia Full list of author information is available at the end of the article Abstract In this article, we have obtained necessary and sufficient conditions in terms of canonical structure F on a semi-invariant submanifold of an almost contact manifold under which the submanifold reduced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2015

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1503393p